

DEVELOP AND DESIGN

Swift for
Beginners

Boisy G. Pitre

PEACHPIT PRESS
WWW.PEACHPIT.COM

http://www.Peachpit.com

Swift for Beginners: Develop and Design

Boisy G. Pitre

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com.

Peachpit Press is a division of Pearson Education.

Copyright 2015 by Boisy G. Pitre

Editor: Robyn G. Thomas
Copyeditor: Darren Meiss
Proofreader: Nancy Bell
Technical editor: Steve Phillips
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry
Cover design: Aren Straiger

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks

Apple, Cocoa, Cocoa Touch, Objective-C, OS X, and Xcode are registered trademarks of Apple Inc., registered in the U.S. and
other countries. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout this book
are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-134-04470-5
ISBN-10: 0-134-04470-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com

To the girls: Toni, Hope, Heidi, Lillian, Sophie, and Belle

ACKNOWLEDGMENTS

When creating a book, it truly “takes a village,” and I could not have had better support from
the staff at Peachpit Press. Many thanks go to executive editor, Cliff Colby at Peachpit for
providing me the opportunity; editor Robyn Thomas for her immensely helpful and invalu-
able editing skills and for keeping the project on track; technical editor Steve Phillips who
meticulously commented on drafts of the book for technical correctness and whose contri-
butions undoubtedly made this work better.

During my writing, I’ve drawn inspiration from the works of a number of friends who
are authors in the iOS and Mac OS developer community: Chris Adamson, Bill Cheeseman,
Bill Dudney, Daniel Steinberg, and Richard Warren.

I would be remiss if I didn’t mention the MacTech Conference dynamic duo Ed Marczak
and Neil Ticktin, as well as CocoaConf maestro Dave Klein, for the writing and speaking
opportunities that they have provided me at those venues.

A tip of the hat to James Dempsey, whose band, the Breakpoints, and their excellent
Backtrace album fueled several long writing and review sessions with their rollicking tunes.
Java Square Café in downtown Opelousas, Louisiana provided a great place to write as well as
tasty lattes. Also, thanks to Dave et Ray’s Camp Jam/Supper Club and my friends there who
served as inspiration for several of the coding examples I used.

Much appreciation goes to the minds at Apple for creating Swift, along with a host of
great products over the years that have enhanced my own productivity and that of many,
many others.

Finally, many thanks to my family, especially my wife, Toni, whose patience and
encouragement while I worked on this book was abundant.

iv ACKNOWLEDGMENTS

ABOUT THE AUTHOR

Boisy G. Pitre is Affectiva’s Mobile Visionary and lead iOS developer, where his work has led
to the creation of the first mobile SDK for delivering emotions to mobile devices for the lead-
ing emotion technology company and spin-off of the MIT Media Lab. Prior to that he was
a member of the Mac Products Group at Nuance Communications where he worked with a
team of developers on Dragon Dictate.

He also owns Tee-Boy, a software company focusing on Mac and iOS applications for the
weather and data acquisition markets, and has authored the monthly Developer to Developer
column in MacTech Magazine.

Along with Bill Loguidice, Boisy co-authored the book CoCo: The Colorful History of
Tandy’s Underdog Computer (2013), published by Taylor & Francis.

Boisy holds a Master of Science in Computer Science from the University of Louisi-
ana at Lafayette, and resides in the quiet countryside of Prairie Ronde, Louisiana. Besides
Mac and iOS development, his hobbies and interests include retro-computing, ham radio,
vending machine and arcade game restoration, farming, and playing the French music of
South Louisiana.

ABOUT THE AUTHOR v

CONTENTS

Introduction . xii

Welcome to Swift . xiv

SECTION I THE BASICS . 2

CHAPTER 1 INTRODUCING SWIFT . 4

Evolutionary, yet Revolutionary . 6

Preparing for Success . 6
Tools of the Trade . 7
Interacting with Swift . 7

Ready, Set… . 8

Diving into Swift . 9
Help and Quit . 10
Hello World! . 10

The Power of Declaration . 11

Constants Are Consistent . 13

This Thing Called a Type . 14
Testing the Limits . 15
Can a Leopard Change Its Stripes? . 16
Being Explicit . 18

Strings and Things . 19
Stringing Things Together . 19
Characters Have Character . 20

Math and More . 21
Expressions . 22
Mixing Numeric Types . 22
Numeric Representations . 23

True or False . 24
The Result . 24

Printing Made Easy . 26

Using Aliases . 27

Grouping Data with Tuples . 28

Optionals . 29

Summary . 31

CHAPTER 2 WORKING WITH COLLECTIONS . 32

The Candy Jar . 34
Birds of a Feather… . 37
Extending the Array . 38
Replacing and Removing Values . 39

vi CONTENTS

Inserting Values at a Specific Location . 40
Combining Arrays . 41

The Dictionary . 42
Looking Up an Entry . 43
Adding an Entry . 45
Updating an Entry . 46
Removing an Entry . 47

Arrays of Arrays? . 48

Starting from Scratch . 50
The Empty Array . 51
The Empty Dictionary . 51

Iterating Collections . 52
Array Iteration . 52
Dictionary Iteration . 54

Summary . 55

CHAPTER 3 TAKING CONTROL . 56

For What It’s Worth . 58
Counting On It . 58
Inclusive or Exclusive? . 59
For Old Time’s Sake . 61
Writing Shorthand . 62

It’s Time to Play . 63

Making Decisions . 66
The Decisiveness of “If” . 66
When One Choice Is Not Enough . 70
Switching Things Around . 72
While You Were Away… . 75
Inspecting Your Code . 78
Give Me a Break! . 81

Summary . 81

CHAPTER 4 WRITING FUNCTIONS AND CLOSURES . 82

The Function . 84
Coding the Function in Swift . 84
Exercising the Function . 86
More Than Just Numbers . 88
Parameters Ad Nauseam . 89
Functions Fly First Class . 92
Throw Me a Function, Mister . 94
A Function in a Function in a… . 96
Default Parameters . 99
What’s in a Name? . 100

CONTENTS vii

When It’s Good Enough . 103
To Use or Not to Use? . 104
Don’t Change My Parameters! . 105
The Ins and Outs . 108

Bringing Closure . 109

Summing It Up . 113

Stay Classy . 113

CHAPTER 5 ORGANIZING WITH CLASSES AND STRUCTURES 114

Objects Are Everywhere . 116

Swift Objects Are Classy . 117
Knock, Knock . 118
Let There Be Objects! . 119
Opening and Closing the Door . 120
Locking and Unlocking the Door . 121
Examining the Properties . 124
Door Diversity . 124
Painting the Door . 127

Inheritance . 128
Modeling the Base Class . 129
Creating the Subclasses . 132
Instantiating the Subclass . 133
Convenience Initializers . 139
Enumerations . 141
Structural Integrity . 144
Value Types vs. Reference Types . 145

Looking Back, Looking Ahead . 147

CHAPTER 6 FORMALIZING WITH PROTOCOLS AND EXTENSIONS 148

Following Protocol . 150
Class or Protocol? . 150
More Than Just Methods . 153
Adopting Multiple Protocols . 155
Protocols Can Inherit, Too . 157
Delegation . 158

Extending with Extensions . 161
Extending Basic Types . 163
Using Closures in Extensions . 167

Summary . 169

viii CONTENTS

SECTION II DEVELOPING WITH SWIFT . 170

CHAPTER 7 WORKING WITH XCODE . 172

Xcode’s Pedigree . 174

Creating Your First Swift Project . 175

Diving Down . 176
Interacting with the Project Window . 178
It’s Alive! . 180

Piquing Your Interest . 180
Making Room . 181
Building the UI . 182
Tidying Up . 184
Class Time . 186
Hooking It Up . 189

You Made an App! . 191

CHAPTER 8 MAKING A BETTER APP . 192

It’s the Little Things . 194
Show Me the Money . 194
Remember the Optional? . 196
Unwrapping Optionals . 197
Looking Better . 197
Formatting: A Different Technique . 198

Compounding . 201
Hooking Things Up . 203
Testing Your Work . 205

When Things Go Wrong . 206
Where’s the Bug? . 206
At the Breaking Point . 207
The Confounding Compound . 210

The Value of Testing . 211
The Unit Test . 211
Crafting a Test . 212
When Tests Fail . 215
Tests That Always Run . 216

Wrapping Up . 217

CHAPTER 9 GOING MOBILE WITH SWIFT . 218

In Your Pocket vs. on Your Desk . 220

How’s Your Memory? . 220
Thinking About Gameplay . 221
Designing the UI . 221

CONTENTS ix

Creating the Project . 222

Building the User Interface . 224
Creating the Buttons . 225
Running in the Simulator . 227
Setting Constraints . 228

The Model-View-Controller . 230

Coding the Game . 231
The Class . 236
Enumerations . 236
The View Objects . 236
The Model Objects . 237
Overridable Methods . 238
Game Methods . 238
Winning and Losing . 242

Back to the Storyboard . 245

Time to Play . 247

CHAPTER 10 ADVANCING AHEAD . 248

Memory Management in Swift . 250
Value vs. Reference . 250
The Reference Count . 251
Only the Strong Survive . 252
Put It in a Letter . 253
The Test Code . 254
Breaking the Cycle . 256
Cycles in Closures . 257
Thanks for the Memories . 259

Thinking Logically . 259
To Be or NOT to Be… . 260
Combining with AND . 261
One Way OR the Other . 261

Generics . 263

Overloading Operators . 265

Equal vs. Identical . 267

Scripting and Swift . 269
Editing the Script . 270
Setting Permissions . 271
Running the Script . 272
How It Works . 272

Calling S.O.S. . 274

And Now, Your Journey Begins . 276
Study Apple’s Frameworks . 276

x CONTENTS

Join Apple’s Developer Program . 276
Become a Part of the Community . 276
Never Stop Learning . 277
Bon Voyage! . 277

Index. .278

CONTENTS xi

INTRODUCTION

Welcome to Swift for Beginners! Swift is Apple’s new language for developing apps for iOS
and Mac OS, and it is destined to become the premier computer language in the mobile
and desktop space. As a new computer language, Swift has the allure of a shiny new car—
everybody wants to see it up close, kick the tires, and take it for a spin down the road. That’s
probably why you’re reading this book—you’ve heard about Swift and decided to see what
all the fuss is about.

The notion that Swift is an easy language to use and learn certainly has merit, especially
when compared to the capable but harder-to-learn programming language it’s replacing:
Objective-C. Apple has long used Objective-C as its language of choice for developing soft-
ware on its platforms, but that is changing with the introduction of Swift.

Not only is Swift easy to learn, it’s extremely powerful. You’ll get a taste of some of that
power here in this book.

WHO IS THIS BOOK FOR?

This book was written for the beginner in mind. In a sense, we’re all beginners with Swift
because it’s such a new language. However, many will want to learn Swift as a first or second
computer language, many of whom haven’t had any exposure to Objective-C or related lan-
guages, C and C++.

Ideally, the reader will have some understanding and experience with a computer lan-
guage; even so, the book is styled to appeal to the neophyte who is sufficiently motivated
to learn. More experienced developers will probably find the first few chapters to be review
material and light reading because the concepts are ubiquitous among many computer lan-
guages but nonetheless important to introduce Swift to the beginner.

No matter your skill level or prior experience, Swift for Beginners will appeal to anyone
who wants to learn about Swift.

HOW TO USE THIS BOOK

Like other books of its kind, Swift for Beginners is best read from start to finish. The material
in subsequent chapters tends to build on the knowledge attained from previous ones. How-
ever, with few exceptions, code examples are confined to a single chapter.

The book is sized to provide a good amount of material, but not so much as to over-
whelm the reader. Interspersed between the text are a copious number of screenshots to
guide the beginner through the ins and outs of Swift as well as the Xcode tool chain.

HOW YOU WILL LEARN

The best way to learn Swift is to use it, and using Swift is emphasized throughout the book
with plenty of code and examples.

xii INTRODUCTION

Each chapter contains code that builds on the concepts presented. Swift has two interac-
tive environments you will use to test out concepts and gain understanding of the language:
the REPL and playgrounds. Later, you’ll build two simple but complete apps: a loan calcula-
tor for Mac OS and a memory game for iOS.

Swift concepts will be introduced throughout the text—classes, functions, closures, and
more, all the way to the very last chapter. You’re encouraged to take your time and read each
chapter at your leisure, even rereading if necessary, before moving on to the next one.

Source code for all the chapters is available at www.peachpit.com/swiftbeginners.
You can download the code for each chapter, which cuts down considerably on typing;
nonetheless, I am a firm believer in typing in the code. By doing so, you gain insight and
comprehension you might otherwise miss if you just read along and rely on the downloaded
code. Make the time to type in all of the code examples.

For clarity, code and other constructs such as class names are displayed in monospace font.
Highlighted code throughout the book identifies the portions of the code that are

intended for you to type:

 1> let candyJar = ["Peppermints", "Gooey Bears", "Happy Ranchers"]

candyJar: [String] = 3 values {

 [0] = "Peppermints"

 [1] = "Gooey Bears"

 [2] = "Happy Ranchers"

}

 2>

You’ll also find notes containing additional information about the topics.

WHAT YOU WILL LEARN

Ultimately, this book will show you how to use Swift to express your ideas in code. When
you complete the final chapter, you should have a good head start, as well as a solid under-
standing of what the language offers. Additionally, you’ll have the skills to begin writing an
app. Both iOS and Mac OS apps are presented as examples in the later chapters.

What this book does not do is provide an all-inclusive, comprehensive compendium on
the Swift programming language. Apple’s documentation is the best resource for that. Here,
the emphasis is primarily on learning the language itself; various Cocoa frameworks are
touched on where necessary to facilitate the examples but are not heavily emphasized for
their own sake.

NOTE: To print or not to print? Remember, simply typing the name of the

item without using print or println is acceptable when using the REPL.

When doing so, the result of the expression is assigned to a temporary

variable—in this case $R0.

INTRODUCTION xiii

http://www.peachpit.com/swiftbeginners

WELCOME TO SWIFT

Swift is a fun, new, and easy-to-learn computer language from Apple. With the
knowledge you’ll gain from this book, you can begin writing apps for iOS and
Mac OS. The main tool you’ll need to start learning Swift is the Xcode integrated
development environment (IDE). Xcode includes the Swift compiler, as well
as the iOS and Mac OS software development kits (SDKs) that contain all the
infrastructure required to support the apps you develop.

THE TECHNOLOGIES

The following technologies are all part of your journey into the
Swift language.

SWIFT

Swift is the language

you’ll learn in this book.

Swift is a modern lan-

guage designed from the

ground up to be easy to

learn as well as power-

ful. It is language that

Apple has chosen to fuel

the continued growth

of apps, which make up

their iOS and Mac OS

ecosystem.

XCODE

Xcode is Apple’s premier

environment for writing

apps. It includes an editor,

debugger, project man-

ager, and the compiler

tool chain needed to take

Swift code and turn it into

runnable code for iOS or

Mac OS. You can down-

load Xcode from Apple’s

Mac App Store.

LLVM

Although it works behind

the scenes within Xcode,

LLVM is the compiler

technology that empow-

ers the elegance of the

Swift language and turns

it into the digestible bits

and bytes needed by the

processors that power

Apple devices.

xiv WELCOME TO SWIFT

THE REPL

The Read-Eval-Print-Loop (REPL) is a command-line tool

you can use to try out Swift code quickly. You run it

from the Terminal application on Mac OS.

PLAYGROUNDS

The interactivity and immediate results from Xcode’s

playgrounds are a great way to try out Swift code as

you learn the language.

WELCOME TO SWIFT xv

CHAPTER 4

Writing Functions
and Closures

We’ve covered a lot up to this point in the book: variables, con-

stants, dictionaries, arrays, looping constructs, control structures,

and the like. You’ve used both the REPL command-line interface

and now Xcode 6’s playgrounds feature to type in code samples

and explore the language.

Up to this point, however, you have been limited to mostly

experimentation: typing a line or three here and there and

observing the results. Now it’s time to get more organized with

your code. In this chapter, you’ll learn how to tidy up your Swift

code into nice clean reusable components called functions.

Let’s start this chapter with a fresh, new playground file. If

you haven’t already done so, launch Xcode 6 and create a new

playground by choosing File > New > Playground, and name it

Chapter 4. We’ll explore this chapter’s concepts with contrived

examples in similar fashion to earlier chapters.

83

THE FUNCTION

Think back to your school years again. This time, remember high school algebra. You were
paying attention, weren’t you? In that class your teacher introduced the concept of the
function. In essence, a function in arithmetic parlance is a mathematical formula that takes
an input, performs a calculation, and provides a result, or output.

Mathematical functions have a specific notation. For example, to convert a Fahrenheit
temperature value to the equivalent Celsius value, you would express that function in this way:

The important parts of the function are:

 � Name: In this case the function’s name is f.

 � Input, or independent variable: Contains the value that will be used in the function.
Here it’s x.

 � Expression: Everything on the right of the equals sign.

 � Result: Considered to be the value of f(x) on the left side of the equals sign.

Functions are written in mathematical notation but can be described in natural language.
In English, the sample function could be described as:

A function whose independent variable is x and whose result is the difference of the
independent variable and 32, with the result being multiplied by 5, with the result being
divided by 9.
The expression is succinct and tidy. The beauty of this function, and functions in

general, is that they can be used over and over again to perform work, and all they need
to do is be called with a parameter. So how does this relate to Swift? Obviously I wouldn’t
be talking about functions if they didn’t exist in the Swift language. And as you’ll see,
they can perform not just mathematical calculations, but a whole lot more.

CODING THE FUNCTION IN SWIFT

Swift’s notation for establishing the existence of a function is a little different than the
mathematical one you just saw. In general, the syntax for declaring a Swift function is:

func funcName(paramName : type, ...) -> returnType

Take a look at an example to help clarify the syntax. Figure 4.1 shows the code in the
Chapter 4.playground file, along with the function defined on lines 7 through 13. This is the
function discussed earlier, but now in a notation the Swift compiler can understand.

84 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

Start by typing in the following code.

func fahrenheitToCelsius(fahrenheitValue : Double) -> Double {

 var result : Double

 result = (((fahrenheitValue - 32) * 5) / 9)

 return result

}

As you can see on line 7, there is some new syntax to learn. The func keyword is Swift’s
way to declare a function. That is followed by the function name (fahrenheitToCelsius),
and the independent variable’s name, or parameter name in parentheses. Notice that the
parameter’s type is explicitly declared as Double.

Following the parameter are the two characters ->, which denote that this function is
returning a value of a type (in this case, a Double type), followed by the open curly brace,
which indicates the start of the function.

On line 8, you declare a variable of type Double named result. This will hold the value
that will be given back to anyone who calls the function. Notice it is the same type as the
function’s return type declared after the -> on line 7.

The actual mathematical function appears on line 10, with the result of the expres-
sion assigned to result, the local variable declared in line 8. Finally on line 12, the result is
returned to the caller using the return keyword. Any time you wish to exit a function and
return to the calling party, you use return along with the value being returned.

The Results sidebar doesn’t show anything in the area where the function was typed.
That’s because a function by itself doesn’t do anything. It has the potential to perform some
useful work, but it must be called by a caller. That’s what you’ll do next.

FIGURE 4.1 Tempera-

ture conversion as a

Swift function

THE FUNCTION 85

EXERCISING THE FUNCTION

Now it’s time to call on the function you just created. Type in the following two lines of code,
and pay attention to the Results sidebar in Figure 4.2.

var outdoorTemperatureInFahrenheit = 88.2

var outdoorTemperatureInCelsius = fahrenheitToCelsius(outdoorTemperature
p InFahrenheit)

On line 15, you’ve declared a new variable, outdoorTemperatureInFahrenheit, and set
its value to 88.2 (remember, Swift infers the type in this case as a Double). That value is then
passed to the function on line 16, where a new variable, outdoorTemperatureInCelsius, is
declared, and its value is captured as the result of the function.

The Results sidebar shows that 31.222222 (repeating decimal) is the result of the func-
tion, and indeed, 31.2 degrees Celsius is equivalent to 88.2 degrees Fahrenheit. Neat, isn’t it?
You now have a temperature conversion tool right at your fingertips.

Now, here’s a little exercise for you to do on your own: Write the inverse method,
celsiusToFahrenheit using the following formula for that conversion:

Go ahead and code it up yourself, but resist the urge to peek ahead. Don’t look until
you’ve written the function, and then check your work against the following code and in
Figure 4.3.

FIGURE 4.2 The result

of calling the newly

created function

86 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

func celsiusToFahrenheit(celsiusValue : Double) -> Double {

 var result : Double

 result = (((celsiusValue * 9) / 5) + 32)

 return result

}

outdoorTemperatureInFahrenheit = celsiusToFahrenheit(outdoorTemperature
p InCelsius)

The inverse function on lines 18 through 24 simply implements the Celsius to Fahrenheit
formula and returns the result. Passing in the Celsius value of 31.22222 on line 26, you can
see that the result is the original Fahrenheit value, 88.2.

You’ve just created two functions that do something useful: temperature conversions.
Feel free to experiment with other values to see how they change between the two related
functions.

FIGURE 4.3 Declaring

the inverse function,

celsiusToFahrenheit

THE FUNCTION 87

MORE THAN JUST NUMBERS

The notion of a function in Swift is more than just the mathematical concept we have
discussed. In a broad sense, Swift functions are more flexible and robust in that they can
accept more than just one parameter, and even accept types other than numeric ones.

Consider creating a function that takes more than one parameter and returns something
other than a Double (Figure 4.4).

func buildASentence(subject : String, verb : String, noun : String) -> String {

 return subject + " " + verb + " " + noun + "!"

}

buildASentence("Swift", "is", "cool")

buildASentence("I", "love", "languages")

After typing in lines 28 through 33, examine your work. On line 28, you declared a new
function, buildASentence, with not one but three parameters: subject, verb, and noun, all
of which are String types. The function also returns a String type as well. On line 29, the
concatenation of those three parameters, interspersed with spaces to make the sentence
readable, is what is returned.

For clarity, the function is called twice on lines 32 and 33, resulting in the sentences in
the Results sidebar. Feel free to replace the parameters with values of your own liking and
view the results interactively.

FIGURE 4.4 A multi-

parameter function

88 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

PARAMETERS AD NAUSEAM

Imagine you’re writing the next big banking app for the Mac, and you want to create a way
to add some arbitrary number of account balances. Something so mundane can be done a
number of ways, but you want to write a Swift function to do the addition. The problem is
you don’t know how many accounts will need to be summed at any given time.

Enter Swift’s variable parameter passing notation. It provides you with a way to tell Swift,
“I don’t know how many parameters I’ll need to pass to this function, so accept as many as
I will give.” Type in the following code, which is shown in action on lines 35 through 48 in
Figure 4.5.

// Parameters Ad Nauseam

func addMyAccountBalances(balances : Double...) -> Double {

 var result : Double = 0

 for balance in balances {

 result += balance

 }

FIGURE 4.5 Variable

parameter passing in a

function

THE FUNCTION 89

 return result

}

addMyAccountBalances(77.87)

addMyAccountBalances(10.52, 11.30, 100.60)

addMyAccountBalances(345.12, 1000.80, 233.10, 104.80, 99.90)

This function’s parameter, known as a variadic parameter, can represent an unknown
number of parameters.

On line 36, our balances parameter is declared as a Double followed by the ellipsis (...)
and returns a Double. The presence of the ellipsis is the clue: It tells Swift to expect one or
more parameters of type Double when this function is called.

The function is called three times on lines 46 through 48, each with a different number of
bank balances. The totals for each appear in the Results sidebar.

You might be tempted to add additional variadic parameters in a function. Figure 4.6
shows an attempt to extend addMyAccountBalances with a second variadic parameter, but it
results in a Swift error.

FIGURE 4.6 Adding

additional variable

parameters results in

an error.

90 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

This is a no-no, and Swift will quickly shut you down with an error. Only the last
parameter of a function may contain the ellipsis to indicate a variadic parameter. All
other parameters must refer to a single quantity.

Since we’re on the theme of bank accounts, add two more functions: one that will find
the largest balance in a given list of balances, and another that will find the smallest balance.
Type the following code, which is shown on lines 50 through 75 in Figure 4.7.

func findLargestBalance(balances : Double...) -> Double {

 var result : Double = -Double.infinity

 for balance in balances {

 if balance > result {

 result = balance

 }

 }

 return result

}

FIGURE 4.7 Functions

to find the largest and

smallest balance

THE FUNCTION 91

func findSmallestBalance(balances : Double...) -> Double {

 var result : Double = Double.infinity

 for balance in balances {

 if balance < result {

 result = balance

 }

 }

 return result

}

findLargestBalance(345.12, 1000.80, 233.10, 104.80, 99.90)

findSmallestBalance(345.12, 1000.80, 233.10, 104.80, 99.90)

Both functions iterate through the parameter list to find the largest and smallest balance.
Unless you have an account with plus or minus infinity of your favorite currency, these func-
tions will work well. On lines 74 and 75, both functions are tested with the same balances
used earlier, and the Results sidebar confirms their correctness.

FUNCTIONS FLY FIRST CLASS

One of the powerful features of Swift functions is that they are first-class objects. Sounds
pretty fancy, doesn’t it? What that really means is that you can handle a function just like
any other value. You can assign a function to a constant, pass a function as a parameter to
another function, and even return a function from a function!

To illustrate this idea, consider the act of depositing a check into your bank account, as
well as withdrawing an amount. Every Monday, an amount is deposited, and every Friday,
another amount is withdrawn. Instead of tying the day directly to the function name of the
deposit or withdrawal, use a constant to point to the function for the appropriate day. The
code on lines 77 through 94 in Figure 4.8 provides an example.

var account1 = ("State Bank Personal", 1011.10)

var account2 = ("State Bank Business", 24309.63)

func deposit(amount : Double, account : (name : String, balance : Double)) ->
p (String, Double) {

 var newBalance : Double = account.balance + amount

 return (account.name, newBalance)

}

92 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

func withdraw(amount : Double, account : (name : String, balance : Double)) ->
p (String, Double) {

 var newBalance : Double = account.balance - amount

 return (account.name, newBalance)

}

let mondayTransaction = deposit

let fridayTransaction = withdraw

let mondayBalance = mondayTransaction(300.0, account1)

let fridayBalance = fridayTransaction(1200, account2)

For starters, you create two accounts on lines 77 and 78. Each account is a tuple consist-
ing of an account name and balance.

On line 80, a function is declared named deposit that takes two parameters: the amount
(a Double) and a tuple named account. The tuple has two members: name, which is of type
String, and balance, which is a Double that represents the funds in that account. The same
tuple type is also declared as the return type.

FIGURE 4.8

Demonstrating

functions as first-class

types

THE FUNCTION 93

At line 81, a variable named newBalance is declared, and its value is assigned the sum of
the balance member of the account tuple and the amount variable that is passed. The tuple
result is constructed on line 82 and returned.

The function on line 85 is named differently (withdraw) but is effectively the same, save
for the subtraction that takes place on line 86.

On lines 90 and 91, two new constants are declared and assigned to the functions
respectively by name: deposit and withdraw. Since deposits happen on a Monday, the
mondayTransaction is assigned the deposit function. Likewise, withdrawals are on Friday,
and the fridayTransaction constant is assigned the withdraw function.

Lines 93 and 94 show the results of passing the account1 and account2 tuples to the
mondayTransaction and fridayTransaction constants, which are in essence the functions
deposit and withdraw. The Results sidebar bears out the result, and you’ve just called the
two functions by referring to the constants.

THROW ME A FUNCTION, MISTER

Just as a function can return an Int, Double, or String, a function can also return another
function. Your head starts hurting just thinking about the possibilities, doesn’t it? Actually,
it’s not as hard as it sounds. Check out lines 96 through 102 in Figure 4.9.

func chooseTransaction(transaction: String) -> (Double, (String, Double)) ->
p (String, Double) {

 if transaction == "Deposit" {

 return deposit

 }

 return withdraw

}

On line 96, the function chooseTransaction takes a String as a parameter, which it uses
to deduce the type of banking transaction. That same function returns a function, which
itself takes a Double, and a tuple of String and Double, and returns a tuple of String and
Double. Phew!

That’s a mouthful. Let’s take a moment to look at that line closer and break it down a
bit. The line begins with the definition of the function and its sole parameter: transaction,
followed by the -> characters indicating the return type:

func chooseTransaction(transaction: String) ->

After that is the return type, which is a function that takes two parameters: the Double,
and a tuple of Double and String, as well as the function return characters ->:

(Double, (String, Double)) ->

And finally, the return type of the returned function, a tuple of String and Double.

94 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

What functions did you write that meet this criteria? The deposit and withdraw func-
tions, of course! Look at lines 80 and 85. Those two functions are bank transactions that
were used earlier. Since they are defined as functions that take two parameters (a Double and
a tuple of String and Double) and return a tuple of Double and String, they are appropriate
candidates for return values in the chooseTransaction function on line 96.

Back to the chooseTransaction function: On line 97, the transaction parameter,
which is a String, is compared against the constant string "Deposit" and if a match is made,
the deposit function is returned on line 98; otherwise, the withdraw function is returned on
line 101.

Ok, so you have a function which itself returns one of two possible functions. How do
you use it? Do you capture the function in another variable and call it?

Actually, there are two ways this can be done (Figure 4.10).

// option 1: capture the function in a constant and call it

let myTransaction = chooseTransaction("Deposit")

myTransaction(225.33, account2)

// option 2: call the function result directly

chooseTransaction("Withdraw")(63.17, account1)

FIGURE 4.9

Returning a function

from a function

THE FUNCTION 95

On line 105 you can see that the returned function for making deposits is captured in
the constant myTransaction, which is then called on line 106 with account2 increasing its
amount by $225.33.

The alternate style is on line 109. There, the chooseTransaction function is being
called to gain access to the withdraw function. Instead of assigning the result to a constant,
however, the returned function is immediately pressed into service with the parameters
63.17 and the first account, account1. The results are the same in the Results sidebar: The
withdraw function is called and the balance is adjusted.

A FUNCTION IN A FUNCTION IN A…

If functions returned by functions and assigned to constants isn’t enough of an enigma for
you, how about declaring a function inside of another function? Yes, such a thing exists.
They’re called nested functions.

Nested functions are useful when you want to isolate, or hide, specific functionality that
doesn’t need to be exposed to outer layers. Take, for instance, the code in Figure 4.11.

// nested function example

func bankVault(passcode : String) -> String {

 func openBankVault(Void) -> String {

 return "Vault opened"

 }

FIGURE 4.10 Calling

the returned function

in two different ways

96 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

 func closeBankVault(Void) -> String {

 return "Vault closed"

 }

 if passcode == "secret" {

 return openBankVault()

 }

 else {

 return closeBankVault()

 }

}

println(bankVault("wrongsecret"))

println(bankVault("secret"))

On line 112, a new function, bankVault, is defined. It takes a single parameter, passcode,
which is a String, and returns a String.

Lines 113 and 116 define two functions inside of the bankVault function: openBankVault
and closeBankVault. Both of these functions take no parameter and return a String.

On line 119, the passcode parameter is compared with the string "secret" and if a match
is made, the bank vault is opened by calling the openBankVault function. Otherwise, the
bank vault remains closed.

FIGURE 4.11 Nested

functions in action

THE FUNCTION 97

INTO THE VOID

On lines 113 and 116, you’ll notice a new Swift keyword: Void. It means exactly what you

might think: emptiness. The Void keyword is used mostly as a placeholder when declaring

empty parameter lists, and is optional in this case. However, be aware of it because you

will be seeing more of it later.

Lines 127 and 128 show the result of calling the bankVault method with an incorrect and
correct passcode. What’s important to realize is that the openBankVault and closeBankVault
functions are “enclosed” by the bankVault function, and are not known outside of
that function.

If you were to attempt to call either openBankVault or closeBankVault outside of the
bankVault function, you would get an error. That’s because those functions are not in scope.
They are, in effect, hidden by the bankVault function and are unable to be called from the
outside. Figure 4.12 illustrates an attempt to call one of these nested functions.

In general, the obvious benefit of nesting functions within functions is that it prevents
the unnecessary exposing of functionality. In Figure 4.12, The bankVault function is the sole
gateway to opening and closing the vault, and the functions that perform the work are iso-
lated within that function. Always consider this when designing functions that are intended
to work together.

FIGURE 4.12 The result

of attempting to call a

nested function from a

different scope

98 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

DEFAULT PARAMETERS

As you’ve just seen, Swift functions provide a rich area for utility and experimentation. A lot
can be done with functions and their parameters to model real-world problems. Functions
provide another interesting feature called default parameter values, which allow you to
declare functions that have parameters containing a “prefilled” value.

Let’s say you want to create a function that writes checks. Your function would take two
parameters: a payee (the person or business to whom the check is written) and the amount.
Of course, in the real world, you will always want to know these two pieces of information,
but for now, think of a function that would assume a default payee and amount in the event
the information wasn’t passed.

Figure 4.13 shows such a function on lines 130 through 132. The writeCheck function
takes two String parameters, the payee and amount, and returns a String that is simply a
sentence describing how the check is written.

func writeCheck(payee : String = "Unknown", amount : String = "10.00") ->
p String {

 return "Check payable to " + payee + " for $" + amount

}

writeCheck()

writeCheck(payee : "Donna Soileau")

writeCheck(payee : "John Miller", amount : "45.00")

FIGURE 4.13 Using

default parameters in

a function

THE FUNCTION 99

Take note of the declaration of the function on line 130:

func writeCheck(payee : String = "Unknown", amount : String = "10.00") ->
p String

What you haven’t seen before now is the assignment of the parameters to actual values
(in this case, payee is being set to "Unknown" by default and amount is being set to "10.00").
This is how you can write a function to take default parameters—simply assign the param-
eter name to a value!

So how do you call this function? Lines 134 through 136 show three different ways:

 � Line 134 passes no parameters when calling the function.

 � Line 135 passes a single parameter.

 � Line 136 passes both parameters.
In the case where no parameters are passed, the default values are used to construct the

returned String. In the other two cases, the passed parameter values are used in place of
the default values, and you can view the results of the calls in the Results sidebar.

Another observation: When calling a function set up to accept default parameters, you
must pass the parameter name and a colon as part of that parameter. On line 135, only one
parameter is used:

writeCheck(payee : "Donna Soileau")

And on line 136, both parameter names are used:

writeCheck(payee : "John Miller", amount : "45.00")

Default parameters give you the flexibility of using a known value instead of taking the
extra effort to pass it explicitly. They’re not necessarily applicable for every function out
there, but they do come in handy at times.

WHAT’S IN A NAME?

As Swift functions go, declaring them is easy, as you’ve seen. In some cases, however, what
really composes the function name is more than just the text following the keyword func.

Each parameter in a Swift function can have an optional external parameter preceding
the parameter name. External names give additional clarity and description to a function
name. Consider another check writing function in Figure 4.14, lines 138 through 140.

func writeCheck(payer : String, payee : String, amount : Double) -> String {

 return "Check payable from \(payer) to \(payee) for $\(amount)"

}

writeCheck("Dave Johnson", "Coz Fontenot", 1000.0)

100 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

This function is different from the earlier check writing function on lines 130 through
132 in two ways:

 � An additional parameter named payer to indicate who the check is coming from

 � No default parameters

On line 142, the new writeCheck function is called with three parameters: two String
values and a Double value. From the name of the function, its purpose is clearly to write
a check. When writing a check, you need to know several things: who the check is being
written for; who is writing the check; and for how much? A good guess is that the Double
parameter is the amount, which is a number. But without actually looking at the function
declaration itself, how would you know what the two String parameters actually mean?
Even if you were to deduce that they are the payer and payee, how do you know which is
which, and in which order to pass the parameters?

FIGURE 4.14 A func-

tion without external

parameter names

THE FUNCTION 101

External parameter names solve this problem by adding an additional name to each
parameter that must be passed when calling the function, which makes very clear to anyone
reading the calling function what the intention is and the purpose of each parameter.
Figure 4.15 illustrates this quite well.

func writeBetterCheck(from payer : String, to payee : String, total amount :
p Double) -> String {

 return "Check payable from \(payer) to \(payee) for $\(amount)"

}

writeBetterCheck(from : "Fred Charlie", to: "Ryan Hanks", total : 1350.0)

On line 144, you declare a function, writeBetterCheck, which takes the same number of
parameters as the function on line 138. However, each of the parameters in the new function
now has its own external parameter: from, to, and total. The original parameter names are
still there, of course, used inside the function itself to reference the assigned values.

This extra bit of typing pays off on line 148, when the writeBetterCheck function is
called. Looking at that line of code alone, the order of the parameters and what they indicate
is clear: Write a check from Fred Charlie to Ryan Hanks for a total of $1350.

FIGURE 4.15 A function

with external param-

eter names

102 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

WHEN IT’S GOOD ENOUGH

External parameter names bring clarity to functions, but they can feel somewhat redundant
and clumsy as you search for something to accompany the parameter name. Actually, you
may find that in certain cases, the parameter name is descriptive enough to act as the exter-
nal parameter name. Swift allows you to use the parameter name as an external name, too,
with a special syntax: the # character.

Instead of providing an external parameter name, simply prepend the # character to the
parameter name, and use that name when calling the new function writeBestCheck, as
done on line 150 in Figure 4.16. This is known as shorthand external parameter naming.

The three parameter names, from, to, and total, all are prepended with #. On line 154,
the parameter names are used as external parameter names once again to call the function,
and the use of those names clearly shows what the function’s purpose and parameter order
is: a check written from Bart Stewart to Alan Lafleur for a total of $101.

func writeBestCheck(#from : String, #to : String, #total : Double) -> String {

 return "Check payable from \(from) to \(to) for $\(total)"

}

writeBestCheck(from : "Bart Stewart", to: "Alan Lafleur", total : 101.0)

FIGURE 4.16 Using the

shorthand external

parameter syntax

THE FUNCTION 103

TO USE OR NOT TO USE?

External parameter names bring clarity to functions, but they also require more typing on
the part of the caller who uses your functions. Since they are optional parts of a function’s
declaration, when should you use them?

In general, if the function in question can benefit from additional clarity of having exter-
nal parameter names provided for each parameter, by all means use them. The check writing
example is such a case. Avoid parameter ambiguity in the cases where it might exist. On the
other hand, if you’re creating a function that just adds two numbers (see lines 156 through
160 in Figure 4.17), external parameter names add little to nothing of value for the caller.

func addTwoNumbers(number1 : Double, number2 : Double) -> Double {

 return number1 + number2

}

addTwoNumbers(33.1, 12.2)

FIGURE 4.17 When

external param-

eter names are not

necessary

104 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

DON’T CHANGE MY PARAMETERS!

Functions are prohibited from changing the values of parameters passed to them, because
parameters are passed as constants and not variables. Consider the function cashCheck
on lines 162 through 169 in Figure 4.18.

func cashCheck(#from : String, #to : String, #total : Double) -> String {

 if to == "Cash" {

 to = from

 }

 return "Check payable from \(from) to \(to) for $\(total) has been cashed"

}

cashCheck(from: "Jason Guillory", to: "Cash", total: 103.00)

The function takes the same parameters as our earlier check writing function: who the
check is from, who the check is to, and the total. On line 163, the to variable is checked for the
value "Cash" and if it is equal, it is reassigned the contents of the variable from. The rationale
here is that if you are writing a check to “Cash,” you’re essentially writing it to yourself.

FIGURE 4.18 Assigning

a value to a parameter

results in an error.

THE FUNCTION 105

Notice the error: Cannot assign to ‘let’ value ‘to’. Swift is saying that the parameter to is
a constant, and since constants cannot change their values once assigned, this is prohibited
and results in an error.

To get around this error, you could create a temporary variable, as done in Figure 4.19.
Here, a new variable named otherTo is declared on line 163 and assigned to the to variable,
and then possibly to the from variable assuming the condition on line 164 is met. This is
clearly acceptable and works fine for our purposes, but Swift gives you a better way.

With a var declaration on a parameter, you can tell Swift the parameter is intended to be
variable and can change within the function. All you need to do is add the keyword before
the parameter name (or external parameter name in case you have one of those). Figure 4.20
shows a second function, cashBetterCheck, which declares the to parameter as a variable
parameter. Now the code inside the function can modify the to variable without receiving
an error from Swift, and the output is identical to the workaround function above it.

FIGURE 4.19

A potential work-

around to the param-

eter change problem

106 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

func cashBetterCheck(#from : String, var #to : String, #total : Double) ->
p String {

 if to == "Cash" {

 to = from

 }

 return "Check payable from \(from) to \(to) for $\(total) has been cashed"

}

cashBetterCheck(from: "Ray Daigle", to: "Cash", total: 103.00)

FIGURE 4.20 Using

variable parameters to

allow modifications

THE FUNCTION 107

THE INS AND OUTS

As you’ve just seen, a function can be declared to modify the contents of one or more of its
passed variables. The modification happens inside the function itself, and the change is not
reflected back to the caller.

Sometimes having a function change the value of a passed parameter so that its new value
is reflected back to the caller is desirable. For example, in the cashBetterCheck function on
lines 172 through 177, having the caller know that the to variable has changed to a new value
would be advantageous. Right now, that function’s modification of the variable is not reflected
back to the caller. Let’s see how to do this in Figure 4.21 using Swift’s inout keyword.

func cashBestCheck(#from : String, inout #to : String, #total : Double) ->
p String {

 if to == "Cash" {

 to = from

 }

 return "Check payable from \(from) to \(to) for $\(total) has been cashed"

}

FIGURE 4.21 Using

the inout keyword to

establish a modifiable

parameter

108 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

var payer = "James Perry"

var payee = "Cash"

println(payee)

cashBestCheck(from: payer, to: &payee, total: 103.00)

println(payee)

Lines 181 through 186 define the cashBestCheck function, which is virtually identical to
the cashBetterCheck function on line 172, except the second parameter to is no longer a
variable parameter—the var keyword has been replaced with the inout keyword. This new
keyword tells Swift the parameter’s value can be expected to change in the function and that
the change should be reflected back to the caller. With that exception, everything else is the
same between the cashBetterCheck and cashBestCheck functions.

On lines 188 and 189, two variables are declared: payer and payee, with both being
assigned String values. This is done because inout parameters must be passed a variable.
A constant value will not work, because constants cannot be modified.

On line 190, the payee variable is printed, and the Results sidebar for that line clearly
shows the variable’s contents as "Cash". This is to make clear that the variable is set to its
original value on line 189.

On line 191, we call the cashBestCheck function. Unlike the call to cashBetterCheck on
line 179, we are passing variables instead of constants for the to and from parameters. More
so, for the second parameter (payee), we are prepending the ampersand character (&) to the
variable name. This is a direct result of declaring the parameter in cashBestCheck as an
inout parameter. You are in essence telling Swift that this variable is an in-out variable and
that you expect it to be modified once control is returned from the called function.

On line 193, the payee variable is again printed. This time, the contents of that variable do
not match what was printed on line 189 earlier. Instead, payee is now set to the value "James
Perry", which is a direct result of the assignment in the cashBestCheck function on line 183.

BRINGING CLOSURE

Functions are great, and in the earlier code you’ve written, you can see just how versa-
tile they can be for encapsulating functionality and ideas. Although the many contrived
examples you went through may not give you a full appreciation of how useful they can be
in every scenario, that will change as you proceed through the book. Functions are going to
appear over and over again both here and in your coding, so understand them well. You may
want to re-read this chapter to retain all the ins and outs of functions.

We’ve got a little more to talk about before we close this chapter, however. Our tour of
functions would not be complete without talking about another significant and related
feature of functions in Swift: closures.

BRINGING CLOSURE 109

In layman’s terms, a closure is essentially a block of code, like a function, which “closes
in” or “encapsulates” all the “state” around it. All variables and constants declared and
defined before a closure are “captured” in that closure. In essence, a closure preserves the
state of the program at the point that it is created.

Computer science folk have another word for closures: lambdas. In fact, the very notion
of the function you have been working with throughout this chapter is actually a special
case of a closure—a function is a closure with a name.

So if functions are actually special types of closures, then why use closures? It’s a fair
question, and the answer can be summed up this way: Closures allow you to write simple
and quick code blocks that can be passed around just like functions, but without the over-
head of naming them.

In essence, they are anonymous blocks of executable code.
Swift closures have the following structure:

{ (parameters) -> return_type in

 statements

}

This almost looks like a function, except that the keyword func and the name is missing;
the curly braces encompass the entire closure; and the keyword in follows the return type.

Let’s see closures in action. Figure 4.22 shows a closure being defined on lines 196 through
201. The closure is being assigned to a constant named simpleInterestCalculationClosure.
The closure takes three parameters: loanAmount, interestRate (both Double types), and
years (an Int type). The code computes the future value of a loan over the term and returns it
as a Double.

// Closures

let simpleInterestCalculationClosure = { (loanAmount : Double, var
p interestRate : Double, years : Int) -> Double in

 interestRate = interestRate / 100.0

 var interest = Double(years) * interestRate * loanAmount

 return loanAmount + interest

}

func loanCalculator(loanAmount : Double, interestRate : Double, years :
p Int, calculator : (Double, Double, Int) -> Double) -> Double {

 let totalPayout = calculator(loanAmount, interestRate, years)

 return totalPayout

}

var simple = loanCalculator(10_000, 3.875, 5, simpleInterestCalculationClosure)

110 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

The formula for simple interest calculation is:

futureValue = presentValue * interestRate * years

Lines 203 through 206 contain the function loanCalculator, which takes four param-
eters: The same three that the closure takes, and an additional parameter, calculator,
which is a closure that takes two Double types and an Int type and returns a Double type.
Not coincidentally, this is the same parameter and return type signature as our previously
defined closure.

On line 208, the function is called with four parameters. The fourth parameter is the
constant simpleInterestCalculationClosure, which will be used by the function to com-
pute the total loan amount.

This example becomes more interesting when you create a second closure to pass to the
loanCalculator function. Since you’ve computed simple interest, then write a closure that
computes the future value of money using the compound interest formula:

futureValue = presentValue (1 + interestRate)years

FIGURE 4.22 Using

a closure to compute

simple interest

BRINGING CLOSURE 111

Figure 4.23 shows the compound interest calculation closure defined on lines 210
through 215, which takes the exact same parameters as the simple calculation closure on line
196. On line 217, the loanCalculator function is again called with the same parameters as
before, except the compoundInterestCalculationClosure is passed as the fourth parameter.
As you can see in the Results sidebar, compound interest yields a higher future value of the
loan than simple interest does.

let compoundInterestCalculationClosure = { (loanAmount : Double,
p var interestRate : Double, years : Int) -> Double in

 interestRate = interestRate / 100.0

 var compoundMultiplier = pow(1.0 + interestRate, Double(years))

 return loanAmount * compoundMultiplier

}

var compound = loanCalculator(10_000, 3.875, 5, compoundInterest
p CalculationClosure)

FIGURE 4.23 Adding

a second closure that

computes compound

interest

112 CHAPTER 4 WRITING FUNCTIONS AND CLOSURES

On line 212 you may notice something new: a reference to a function named pow. This
is the power function, and is part of Swift’s math package. The function takes two Double
parameters: the value to be raised and the power to raise it to. It returns the result as a
Double value.

SUMMING IT UP

We’ve spent the entire chapter discussing functions and their use. Toward the end, you
learned about closures and how they are essentially nameless functions that can be passed
around to do useful work. As I indicated earlier, functions and closures are the founda-
tions on which Swift apps are written. They appear everywhere and are an integral part of
the development process. Knowing how they work and when to use them is a skill you will
acquire over time.

In fact, there are even more things about functions and closures that I didn’t touch on in
this chapter. There’s no need to overload you on every possible feature they have; we’ll cover
those extras later in the book. For now, you have enough of the basics to start doing useful
programming.

Also, feel free to work with the code in the playground for this chapter. Change it, modify
it, add to it, and make a mess of it if you want. That’s what playgrounds are for, after all!

STAY CLASSY

With functions and closures covered, we’ll turn our attention to the concept of the class. If
you are familiar with object-oriented programming (OOP), Swift’s notion of a class is similar
to that of Objective-C and C++. If you’re new to the idea of objects and OOP, don’t worry,
we’ll explain all that terminology in the next chapter.

Meanwhile, feel free to take a break and review the notes and code in this chapter, as well
as experiment with your playground file. When you’re ready, proceed to Chapter 5, and we’ll
get down and dirty with classes.

STAY CLASSY 113

This page intentionally left blank

INDEX 279

INDEX

SYMBOLS

+ (addition), performing, 21
&& (ampersands), using with logical AND, 261
[] (brackets), using with arrays, 37
: (colon), using with arrays, 37
, (comma), using with arrays, 34
/ (division), performing, 21
== (double equal), using in comparisons, 68
! (exclamation) point

explained, 188, 197
using with logical NOT, 260

> (greater-than) symbol, effect of, 69
< (less-than) symbol, effect of, 69
* (multiplication), performing, 21
(pound) sign, prepending to parameter

names, 103
? (question mark), using with Int

declarations, 43
(subtraction), performing, 21
… (three periods), using with for-in loop,

58–60
_ (underscore), using, 168
| | (vertical bar), using with logical OR, 261

A

account balances, adding, 89–90
account tuple, example of, 93
actions and outlets, connecting, 190–191
addition (+)

and multiplication code, 266–267
performing, 21

administrator password, entering, 9
aliases, using, 27
ampersands (&&), using with logical AND, 261
AND operator, using, 261
API Reference, accessing, 274
App Delegate object, using, 190
AppDelegate.swift source file, 178–179, 187

append method, adding, 165
append() method, using with arrays, 36, 38–39
ARC (automatic reference counting), 251
array index, explained, 35
array iteration, 52–54
array values

inserting, 40–41
removing, 39–40
replacing, 39–40

arrays. See also empty arrays
accessing elements in, 36
adding values to, 36
of arrays, 48–50
combining, 41–42
confirming values in, 35
declaring to hold type values, 37
defined, 34
versus dictionaries, 42, 48, 50
extending, 38–39
using colon (:) with, 37
using commas with, 34

attributes, explained, 116
Attributes inspector, using in Xcode, 226

B

balances, finding, 91–92
bank account, depositing check into, 92–93
bank balances, finding, 91–92
base class, modeling, 129–132
Bash shell, 269
behaviors, explained, 116
binary notation, 23
“Bonjour, monde,” 10
Bool variable type, 15, 24–25
brackets ([]), using with arrays, 37
break keyword, using, 81

280 INDEX

breakpoints
creating, 207
encountering, 208, 256
in MailChecker’s deinit method, 258
setting, 207

bugs
encountering, 206
fixing, 209–210
identifying, 209
locating, 206
setting breakpoints, 207–210

buttonClicked action method, 189
buttons

creating for FollowMe UI, 225–227
creating in Xcode, 182
selecting in Xcode, 226

C

Calculate button, clicking, 189, 191
Calculate Simple button, creating, 203
CamelCase, explained, 59
candy jar example. See also collections

array values, 37
combining arrays, 41–42
error, 36
explained, 34
extending arrays, 38–39
inserting values, 40–41
let keyword, 34
removing values, 39–40
replacing values, 39–40

case keyword, using with enumerations, 142
cashBestCheck function, defining, 109
cashCheck function, 105
casting values, 13
Character variable type, 15

building Strings from, 20
using, 20

check writing function, 100–101
class keyword, defining objects with, 119
class methods, defining, 119
class relationship, 128
classes

deriving from superclasses, 128
elements of, 117

explained, 117
expressing objects with, 117
names, 117
properties, 117
versus protocols, 150–153
using, 119–120
using in code, 252
in Xcode, 186–189

close method, calling, 120
closures

for computing compound interest, 112
for computing simple interest, 110–111
cycles in, 257–259
example, 110
explained, 110
functions as, 110
as reference types, 257
using in code, 252
using in extensions, 167–168
using with games, 240

Cocoa framework, 220
formatter, 194
returning optionals in, 196

Cocoa Touch
playerLoses method, 242
playerWins method, 242
UIAlertView class, 242

CocoaConf, attending, 277
code, inspecting, 78–80
code samples, running, 7
code snippets, speed limit, 78
coding in real time, 7
ColaMachine class, extending, 162
collections, iterating, 52–55. See also candy jar

example
colon (:), using with arrays, 37
CombinationDoor class

creating, 135–137
testing, 138

comma (,), using with arrays, 34
Command-click shortcut, using, 274
comparing

numbers, 59
strings, 70
values and constants, 68

INDEX 281

compilation process, starting in Xcode, 180
compound interest calculation

correcting, 210
performing, 112
reviewing, 201
testing, 205–207

compound interest class, adding, 202–203
computed properties. See also properties

explained, 164
using, 197

concatenating strings, 19
conferences, attending, 277
constants

comparing, 68
declaring explicitly, 18
using, 13–14
and variables, 14

constraints, setting for FollowMe game,
228–230

Continue program execution button, 256
convenience initializers, using, 139–141
currency format, showing, 197

D

data, grouping with tuples, 28–29
Debug area icon, identifying, 255
declaration, explained, 10–11
declaring, variables, 11
default keyword, using, 73
delegation, using with protocols, 158–161
description method, using, 189
design patterns, 230
designated initializer, explained, 139–140
dictionaries. See also empty dictionaries

adding entries, 45
versus arrays, 42, 48, 50
creating, 42–43
keys and values, 42
looking up entries in, 43–45
ordering, 43
removing entries, 47
returning tuples, 55
Scoville units, 42–44
updating entries, 46

dictionary iteration, 54–55
division (/), performing, 21
Document outline button, clicking, 190
documentation, accessing, 274
dollars property, adding, 196
door, locking and unlocking, 121–124
Door class, instantiating, 120
Door object, 118–119
dot notation

using with methods, 121
using with properties, 121
using with tuples, 28

double equal (==), using in comparisons, 68
Double type, extending, 194–196
double value, explained, 12
Double variable type, 15
do-while loop, using, 76–77

E

else clause, executing, 68
empty arrays, declaring, 51. See also arrays
empty dictionaries, creating, 51–52.

See also dictionaries
enumerations

creating and using, 142–144
explained, 141
using case keyword with, 142
using in FollowMe game, 236

equal versus identical, 267–268
equality

operations, 69
testing for, 80

error messages, immutable value type, 36
errors

details of, 12
disappearance of, 231
displaying, 231

exclamation (!) point
explained, 188, 197
with logical NOT, 260

extending types
gigabytes, 163–164

megabytes, 163–164

282 INDEX

extensions
explained, 162
form of, 162
using with Int type, 163

external parameters. See also parameters;
shorthand external parameter naming

best practices, 104
using with functions, 100–103

F

false, returning, 24
Finder window, opening, 8
Float variable type, 15
floating point number, explained, 11–12
FollowMe game. See also gameplay;

iOS simulator; Simon game;
storyboarding

building UI for, 224
class, 236
coding, 231–235
creating project for, 222–223
enumerations, 236
linking buttons to method, 246
model objects, 237
overridable methods, 238
playing, 247
playSequence method, 244
Product Name, 223
randomButton method, 244
randomness, 243
running in iOS simulator, 227
setting constraints, 228–230
Single View Application template, 223
starting, 244
Tag property for red button, 245
view objects, 236–237
winning and losing, 242–244

FollowMe user interface
Auto Layout, 224
buttons, 225–227
Main.storyboard file, 224

for loop
addition and subtraction, 62
evaluation, 61
flexibility, 61

increment operation, 62
initialization, 61
modification, 61–62

for-in loop
as enumeration mechanism, 58
requirements, 58
use of three periods (.), 58–60

formatter class, using in Cocoa, 194
fractions, mixing with numbers, 22
frontDoor object, opening and closing, 120
functions

calling, 86–87
as closures, 110
coding, 84–85
conversion formula, 86
creating, 88
declaring, 85
explained, 84
external parameters, 100, 102
as first-class objects, 92–94
indicating start of, 85
versus methods, 117
nesting, 96–98
parts of, 84
returning functions, 94–96
using default parameters in, 99–100
variable parameter passing in, 89
variadic parameter, 90

G

game methods
advanceGame, 242
animateWithDuration method, 239
animation parameters, 240
buttonByColor, 238–239
buttonByColor method, 239
closures, 240
colorTouched constant, 241
for FollowMe game, 238–242
highlightColor variable, 239
highlightTime parameter, 240
if statement, 239
optional chaining, 241
originalColor variable, 239
playSequence() method, 239

INDEX 283

recursion, 240
switch/case construct, 238
tag properties for UIButtons, 241
type method, 239
variable declarations, 239

gameplay. See also FollowMe game;
Simon game

elements, 221
losing, 221
play flow, 221
playability, 221
randomness, 221
winning, 221

generic methods. See also methods
exercising, 264
explained, 263
syntax, 263
<T> placeholder, 263

Go menu, displaying, 8
greater-than (>) symbol, effect of, 69
grouping data with tuples, 28–29

H

“Hello World!” , 10
:help command, typing at prompt, 10
hexadecimal notation, 23
HUD (heads-up display) window, using in

Xcode, 190–191

I

IDE (integrated development environment),
components of, 174

identical versus equal, 267–268
if clause, encountering, 67
if statement

explained, 66
predicate, 66
wrapping in for loop, 71

if/then/else clause
explained, 66
form of, 67

import keyword, using in Xcode, 179
import statement, displaying in playground

window, 65

inheritance
base class, 129–132
class relationship, 128
enumerations, 141–144
explained, 128
initializers, 139–141
instantiating subclasses, 133–139
structures, 144–145
subclasses, 132–133
using with protocols, 157–158
value types versus reference types, 145–147

init method
calling for superclass, 133
creating, 125–126
as designated initializer, 139–140
for NiceDoor class, 133

initializers. See convenience initializers
inout keyword, using with modifiable

parameter, 108
insert() method, using with arrays, 41
inspector icons, using in Xcode, 225
instantiating subclasses, 133–139
instantiation, explained, 119
Int type, extending, 163–164
Int* variable type, 15
integers

positive and negative, 15
testing for equality, 267

interactivity, benefits of, 7
inverse function, declaring, 87
iOS

MVC (model-view-controller), 230
versus OS X, 220

iOS Developer Program, joining, 276
iOS simulator, launching, 227. See also

FollowMe game
iPhones, aspect ratio, 222
iterating collections, 52–55

K

keyboard shortcuts, using, 274
kilobyte (kb), converting Int to, 163–164

284 INDEX

L

labels, creating in Xcode, 183
large number notation, 23
lazy property, example of, 257. See also

properties
leniency, using in Xcode, 201
less-than (<) symbol, effect of, 69
let keyword

changing to var keyword, 125, 127
using, 13–14
using with candy jar, 34

Letter class, creating, 253–254
LLVM compiler, 250
loanCalculator function, calling, 112
lock function, declaring, 152
logical NOT operator, using, 260
logical operations

AND, 259–261
code sample, 262
combining with logical AND, 261
indicating, 261
NOT, 259–260
OR, 259–261

loops, exiting from, 81

M

Mac Developer Program, joining, 276
MacTech Conference, attending, 277
MailBox class, creating, 253–254
Main.storyboard file, using with FollowMe,

224
math functions, notation for, 84
mathematical expressions, 21–22
megabyte (mb), converting Int to, 163–164
memory address, explained, 250
memory management

breakpoint, 256
Letter class, 253–254
LLVM compiler, 250
MailBox class, 253–254
MailChecker object, 258
reference count, 251
retain/release model, 251
test code, 254–256

value versus reference, 250–251
weak reference, 256

methods versus functions, 117. See also
generic methods

mobile platform. See iOS
model objects, using in FollowMe game, 237
modifiable parameter, using inout keyword

with, 108. See also parameters
modulo (%) operation, performing, 21
multiplication (*), performing, 21
mutable array

example of, 38
explained, 36

mutating method, using in Int class, 165–167
MVC (model-view-controller), 230
MyFirstSwiftAppTests.swift source file, 212

N

name, entering, 9
negative numbers, implying, 21
nested functions, using, 96–98
newBackDoor object, changing color of, 127
newDoor object, instantiating, 126
newFrontDoor object, properties of, 124
NewLockUnlockProtocol, creating, 154–155
NiceDoor class

adding, 132
instantiating, 134–135

NiceWindow class
adding, 132
defining, 133
instantiating, 134

nil

explained, 29
using, 196

NOT operator, using, 260
notifications, using in Xcode, 179
NSNumberFormatter class, explained, 194
NSNumberFormatter object, using, 199–200
number formatter, Lenient option, 201
numbers, comparing, 59
numeric representations

binary, 23
hexadecimal, 23
large number notation, 23

INDEX 285

octal, 23
scientific notation, 23

numeric types, mixing, 22

O

object tree, displaying in Xcode, 201
Objective-C development conferences,

attending, 277
objects

defining with class keyword, 119
expressing via classes, 117
identifying, 116
instantiating, 119
testing identity of, 268–269

octal notation, 23
online communities, joining, 276
OOP (object-oriented programming). See also

Swift programming language
explained, 116
inheritance, 128

open method, calling, 120
operators

overloading, 265–266
using, 69–70

optional chaining, using with games, 241
optionals

declaring types as, 30
declaring variables as, 30
explained, 29, 197
implicitly unwrapped, 188
returning, 196
unwrapping, 188
using in Xcode, 188

Option-click shortcut, using, 274–275
OR operator, using, 261
OS X versus iOS, 220
outlets and actions, connecting, 190–191
override keyword, using, 137

P

parameter values, retaining, 105
parameters, using with functions, 100. See also

external parameters; modifiable parameter;
shorthand external parameter naming

password, entering, 9
playground window

code and code results, 65
comments, 65
default code in, 65
import statement, 65
panes in, 65
Results sidebar, 65
variable declaration, 65

playgrounds
benefits, 65
conventions, 65
creating, 64
explained, 64
inspecting code in, 78–80
naming, 64

Portal class
adding, 129–130
adjusting with name property, 131

positive numbers, implying, 21
post increment, explained, 63
pound (#) sign, prepending to parameter

names, 103
predicate, using with if statement, 66
prepend method, adding, 165
print method, explained, 10, 26–27
printIn method, using, 10–11, 13, 26–27
program flow, explained, 66
properties, explained, 116. See also computed

properties; lazy property
protocols

applying multiple, 155–156
versus classes, 150–153
creating functions for, 156
and delegation, 158–161
and inheritance, 157–158
using, 153–155

Push Button UI element, creating in
Xcode, 182

Q

question mark (?), using with Int
declarations, 43

:quit command, typing, 10

286 INDEX

R

$R3 temporary variable, 25
randomness, achieving in games, 243
real time, coding in, 7
recursion, using with games, 240
reference count, explained, 251
reference cycle

breaking, 256–258
explained, 252
placement in AppDelegate.swift, 255

reference types versus value types, 145–147,
250–251

regression, explained, 211
removeAtIndex() array method, using, 39
REPL (Read-Eval-Print-Loop) environment, 7.

See also Swift REPL
REPL, restarting from Terminal, 35
REPL commands, built-in help for, 10
Results sidebar, icons in, 80

S

safety, emphasis on, 36
scientific notation, 23
Scoville units, 42–44
scripting. See shell scripts
securityDoor object, instantiating, 137
self keyword, using, 126
shell scripts

arguments parameter, 273
creating under Xcode, 270
editing, 270–271
execute method, 272–273
Execution class, 272, 274
explained, 269
“hash bang,” 272
import statement, 272
running, 272
setting permissions, 271
type method, 273
writing, 270

shorthand external parameter naming,
explained, 103. See also external
parameters; parameters

signed integers, 15
Simon game. See also FollowMe game;

gameplay
described, 220
UI design, 221–222

simple interest calculator. See also computed
properties; Xcode IDE

adding result label, 185
buttonClicked action method, 189
buttons, 182
Calculate button, 191
compounding, 201–206
formatted input, 200
inputs, 180–181
interest rate field, 198–201
labels, 183
loan amount field, 198–201
optimizing window size, 185
outputs, 180–181
renaming button title, 184
testing, 185
text fields, 184
UI (user interface), 182–184
using, 111, 203

speed limit code snippet, 78
Spotlight, using, 8
Step Over icon, using, 210
stepping over lines, 208
storyboarding

FollowMe game, 245–246
in Xcode, 224

String type, extending, 165
String variable type, 15

building from Character type, 20
concatenating, 19
using toInt() method with, 17

strings
comparing, 70
testing equality of, 25

structures
explained, 144
using, 144–147

subclasses
creating, 132–133
instantiating, 133–139

INDEX 287

subtraction (−) performing, 21
superclass, explained, 128
Swift programming language. See also OOP

(object-oriented programming)
interacting with, 7
running code samples, 7

Swift REPL, starting, 9. See also REPL
(Read-Eval-Print-Loop) environment

switch statement, using, 72–75
switch-case statement, using, 72–75

T

temperature conversion, performing, 85–87
temperature units, computing, 164
temporary variables. See also variable types

assigning values to, 25
creating, 106

Terminal application
finding, 8
launching, 8

test methods, variables used with, 214
tests. See also unit tests

failure of, 215–216
passing, 214
running, 214, 216–217
writing, 212–214

text fields, using in Xcode, 184
three periods (…) using with for-in loop,

58–60
Timeline pane, accessing, 80
Tractor class

convenience initializers in, 139
using, 141

traffic light analogy, setting up, 67
tuples

grouping data with, 28–29
returning for dictionaries, 55

type alias, explained, 27
type conversion, explained, 17. See also

variable types
type method

in games, 239
in shell scripts, 273

type promotion, explained, 22
types. See variable types

U

UI (user interface)
building in Xcode, 181–184
connecting actions to, 189–190
connecting outlets to, 189–190

UIButton object
tag property for, 241
using in Cocoa Touch, 225

UIKit frameworks, importing, 231, 236
UInt* variable type, 15
unary operators, using, 21
underscore (_), using, 168
unit tests. See also tests

framework, 213
performing, 211–212

unlock function, declaring, 152
unlock method, using, 138
unsigned integers, 15

V

value types versus reference types, 145–147,
250–251

values
comparing, 68
displaying, 13

var declaration, using on parameter, 106
var keyword

changing let keyword to, 125, 127
using, 11

variable declaration, displaying in
playground, 65

variable modification, reflecting to caller,
108–109

variable parameters, using, 106–107
variable types. See also temporary variables;

type conversion
adding .max to, 16
adding .min to, 16
Bool, 15, 24–25
Character, 15

288 INDEX

variable types (continued)
declaring explicitly, 18
Double, 15
explained, 14
Float, 15
Int*, 15
interaction between, 16
limits, 15–16
String, 15
UInt*, 15

variables
adding to protocol definitions, 153
assigning types to, 12
assigning values to, 12
comparing, 267
and constants, 14
declaring, 11
declaring as implicitly unwrapped

optionals, 188
declaring as optionals, 30
names, 13
parameter passing notation, 89–90
usefulness of, 13

variadic parameter, explained, 90
VendingMachineProtocol, defining, 161
vertical bar (| |), using with logical OR, 261
view objects, using in FollowMe game,

236–237
ViewController.swift file, using, 231
Void keyword, explained, 98

W

weak reference, explained, 256
while loop

do-while variation, 76–77
form of, 75–76
stopping, 81
using, 76

writeCheck function, 99–101

X

Xcode 6, requirement of, 7
Xcode IDE. See also simple interest calculator

AppDelegate.swift source file, 178–179
Attributes inspector, 226
attributes inspector, 200
classes, 186–189, 198
clues about source code, 178
comments, 178
components of, 174
context-sensitive help, 198
creating user interface, 181–184
debug area, 177
debug process, 209
Document outline button, 190
editor area, 177–178, 188
file creation dialog, 186
File menu, 175
file template, 186
Help menu, 275
HUD (heads-up display) window, 190–191
import keyword, 179
initializing applications, 178
input leniency, 201
inspector icons, 225
iOS project group, 175
keyboard shortcuts, 198
labels, 183
maximizing workspace, 182
methods, 198
navigator area, 176–178
notifications, 179
NsNumberFormatter object, 199–200
object tree, 201
optimizing window size, 185
optionals, 188
Option-click shortcut, 275
OS X project group, 175–176
project options, 176

INDEX 289

project save dialog, 176
project templates, 175
project window, 176–180
Push Button UI element, 182
releases of, 174
selecting buttons in, 226
starting compilation process, 180
storyboarding, 224
target setup, 177
toolbar, 176
utilities area, 177

Xcode IDEdebug process, executing control
over, 209

XIB file, contents of, 190

	Contents
	Introduction
	Welcome to Swift
	CHAPTER 4 WRITING FUNCTIONS AND CLOSURES
	The Function
	Coding the Function in Swift
	Exercising the Function
	More Than Just Numbers
	Parameters Ad Nauseam
	Functions Fly First Class
	Throw Me a Function, Mister
	A Function in a Function in a…
	Default Parameters
	What’s in a Name?
	When It’s Good Enough
	To Use or Not to Use?
	Don’t Change My Parameters!
	The Ins and Outs
	Bringing Closure
	Summing It Up
	Stay Classy

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

